CALCULATION OF HEAT TRANSFER AND HYDRAULIC
RESISTANCE IN LAMINAR FLOW OF AN EQUILIBRIUM
DISSOCIATING GAS IN A CIRCULAR TUBE

I.8. Olonichev UDC 536.244:532.517.2

Numerical solution of the boundary layer equations has been used to obtain the temperature
and velocity fields, as well as the local heat transfer and friction coefficients, in laminar
flow of equilibrium dissociating hydrogen in a circular tube.

A number of papers investigating the effect of dissociation on heat transfer and friction in tubes have
considered flow either far from the tube entrance [1], or with an established velocity profile {2, 3], and,
in addition, the fluid was considered incompressible. The present paper considers the problem of simul-
taneous development of the velocity and temperature profiles in theflow of an equilibrium dissociating com-

pressible gas.

We consider established laminar fiow of a compressible gas in a comparatively long ecircular tube,
assuming that there is equilibrium dissociation throughout the whole flow volume. Then, as is known, the
effect of the dissociation reaction can be evaluated by introducing the so-called effective physical proper-
ties which, along with molecular transport, account for the effects of transfer due to chemical reactions,
and the determination of temperature and velocity profiles reduces to solution of a system of ordinary
boundary-layer equations
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in which the physical properties depend appreciably on temperature and pressure.
The following boundary conditions are considered:

r>r>0, x=0, T=T, u=V, P=P;

r=ry x>0, T=T, u=0, v=0; 2
r = .aizgt: , v‘:o'
or or

System (1) was solved simultaneously with (2), numerically ona 3M high-speed electronic computer. For
this purpose system (1) was approximated usinga two-layer implicit six~point scheme. A basicrectangular
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grid x = nAx, R = mAR was chosen in the x, R plane, where m,n =0, 1, 2,..., and an auxiliary grid x
= (@ +1/2)Ax, R = mAR.
Using dimensionless variables, system (1) is written in finite difference form as follows:
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where

X=ux/d; u=uNy O =(T—TYTs—T); a=gpc,;, P=PVy v= Ve
B = 4/3600dV,, © = AV¥Y(T,—T); C =4AVyd(Ty—T); &= 4/Vd.

The system of algebraic equations obtained was solved by the marching method [4, 5]. Since the solution
requires knowledge of the coefficients (pu)n —1/2 (pv)nm_ , etc., at the center of the computing layer, the

following iteration process was constructed. First the energy equation was solved in the zero approxima-
tion, in which all the unknown coefficients were given the corresponding values in the preceding layer, and
then the equations of motion and continuity were solved similarly; thereafter the first approximation cal-
culation was performed, in which the unknown coefficients were determined from the results of the zero
approximation.

The iteration process was stopped when the temperature and velocity profiles of the last approxima~
tion did not differ by more than a given amount from the previous approximation. The additional condition

1
j puRdR = const
b

was used to determine the pressure gradient in the equation of motion.

The physical properties were given in tabular form. Here it was assumed that the pressure variation
along the tube had a slight effect on the effective properties, which were given at the pressure Py. In the
calculations the step sizes Ax and AR were reduced until the result did not differ from the previous result
in the third place. The heat-transfer coefficient was calculated from the following formula:

00

92—

OR |g=1
Nu = ————— (4)
Oy — B,y

where &,y is the mean temperature of the gas, determined from the average calorimetric enthalpy.
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Fig. 1. Distribution of dimensionless profiles of velocity and temperature across the tube section as
a function of x/d (Re = 744; Ty = 681°K; Ty = 700°K; Ax = 0.025; AR = 0.05): 1) x/d = 1; 2) 3; 3) 5; 4)
7;5) 10; 6) 15; 7) 20; 8) 25; 9) 30; 10) 35; 11) 40; 12) 50; a) axial velocity component; b) radial veloecity
component; c) temperature. \

Fig. 2. Variation of drag coefficient £ as a function of x/d and of Nu as a function of z (Re = 744; T,

= 681°K; Ty = T00°K; AR = 0.05; Ax =‘0.025): 1) calculated from Eq. (5); 2) from the formula §

= —2(dP/dx)/ pu}; 3) from the formula of [7]; 4) the data of [6]; 5) from Eq. (4).

The hydraulic resistance coefficient was calculated from the formula

5

where

To check the correctness of the method, calculations were performed for small temperature differ-
ences between the wall and the gas, which allowed the results to be compared with others obtained for con-
stant physical properties. Figure 1 shows the distribution of dimensionless gas temperature and of velocity
components across the tube section for various values of x/d. Figure 2 shows results of calculation of Nu
and the drag coefficient. Data of [6, 7] are given for comparison.

Examination of these figures shows that the value of Nu agrees with that obtained for flow with a
parabolic velocity profile [6], while the drag coefficient, depending on its definition, differs somewhat from
the results of the approximate solution of Targ, given in [7], associated with change of the mean velocity
along the tube (in [7] the density and the mean velocity were constant).

In order to elucidate the effect of equilibrium dissociation on heat transfer and friction, a series of
calculations was made with various values of the initial parameters. Since the effective properties of a dis-
sociating gas, and of hydrogen, in particular, typically have extrema in their variation with temperature,
the following three characteristic ranges of variation of the degree of dissociation in the boundary layer
can be identified: 1) @ = 0-1; 2) @ = 0-0.5; 3) o = 0.5-1.

Additionally, for similar conditions at the entrance, caleulations were performed for nondissociating
hydrogen with frozen composition, independent of temperature. To exclude the effect of compressibility
on heat transfer, a mass flux was chosen, corresponding to a value of M at the tube entrance of ~0.01.

The results of the computations show that the equilibrium dissociation had the greatest effect on
temperature profiles. Figure 3 shows dimensionless temperature profiles, calculated for the case of heat-
ing of equilibrium dissociated and "frozen" hydrogen. Examination of Fig. 3 shows that, depending on the
degree of dissociation in the boundary layer, the temperature profile, particularly near the wall, can differ
appreciably from the temperature profile in frozen flow of hydrogen. The temperature profiles also differ
appreciably in the case of cooling of equilibrium dissociated hydrogen.
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Fig. 3. Distribution of dimensionless temperature profile across the tube section, as a function
of x/d, for equilibrium dissociated and "frozen" hydrogen Py=5atm): 1) x/d =1;2) 3;3) 5; 4)
7; 5) 10; 6) 15; 7) 20; 8) 255 a) Re = 424; oy = 1; Ty = 2000°K; T = 7000°K; b) Re = 235; oy = 0.334;
o, =1; Ty=4000%K; T; = T000°K; c) Re = 424; oy = 0; oy = 0.334; T, = 2000°K; Ty =4000°K; I) equi-
librium dissociated hydrogen; II) "frozen" hydrogen.

A B
(T & INufy
a \ \\ a
) \ ¢
ar e \,/ e ] 21 8 N ; ’
2 -1 >\
1} oy == 1} 4 ===
~—— ;?f { - /.3 4
ot o olo = .
b
2 e9\ 2 0\
/ N 2 b
11 4fER RS
3 4 T 734
L Sy T A E 4
¥ c
2 gQ -
PN \ 2 \ P
4 ¢ ARt
/*4\\. _%%—_ t 4 \*N
W - |34
UL ol |
/] 0 20 30 40 50 a /0 20 30 40 x/d

Fig. 4. Distributions of Nu and of the drag coefficient £ along the
tube for heating (A) and cooling (B) of hydrogen (P;=5 atm): A:
a) Re = 424; 04 = 0; o4 = 1; Ty = 2000°K; T, = 7000°K; b) Re = 235;
oy = 0.334; o =1; Ty = 4000°K; T; = 7000°K; ¢) Re = 424; ¢y = 0;

oy = 0.334; T = 2000°K; T; = 4000°K; B: a) Re = 183; 0y = 1; &

= 0; To=T000°K; T; = 2000°K; b) Re = 183; ¢y = 1; 0, = 0.33; T

= 7000°K; Ty = 4000°K; ¢) Re = 235; @ = 0.334; oy = 0; T, = 4000°K;
Ty = 2000°K; I, II) see Fig. 3; 1) Nu; 2) Nug; 3) £; 4) &,.

Figure 4 shows Nu and the drag coefficients, calculated from Eqgs. (4) and (5), for heating and cooling
of equilibrium dissociated and "frozen" hydrogen. The analysis made of the results obtained has shown that
the Nu value for equilibrium dissociation increases, in comparison with the value Nu for frozen flow, as the
degree of dissociation changes in the boundary layer in the range 0to 1 or from 0.5 to 1 in the case of heat-
ing, and in the range 1 to 0 or 0.5 to 0 in the case of cooling. There is a decrease of Nu in comparison with
Nu, with change of the degree of dissociation in the boundary layer from 0 to 0.5 on heating, and from 0.5 to
1 on cooling of the gas.

This effect on the Nu number is connected with the marked change of the effective physical properties
in the boundary layer. It should be noted that the heat flux to the tube wall in all the cases examined is
considerably greater than the heat flux in frozen flow, a feature which is connected with the appreciably

greater values, averaged over the tube cross section, of effective heat capacity and thermal conductivity of
the dissociated gas.
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The velocity profiles are affected much less by the equilibrium dissociation, and so the maximum
difference between the friction coefficients in equilibrium dissociation in frozen flow of hydrogen, £ and &,
does not exceed 10% for the above conditions.

NOTATION

u, v are the velocity components;
X, T are the coordinates;
Vy is the gas velocity at the tube entrance;
T;, Ty are the temperatures of the wall and the gas at the tube entrance;
d is the tube diameter;
Py is the pressure at the tube entrance;
[ is the density;
oy, Oy are the degree of dissociation at temperatures T, and T;
R=r/ry
z = x -103/ (dPrRe);
A is the thermal equivalent of mechanical work;
M is the Mach number;
Re is the Reynolds number;
Nu is the Nusselt number;
Nuy, is the Nusselt number in frozen flow;
Sy, 89 are the averaging parameters.
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